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Evolution OF AXISY~R~~ VORTfCITY DISTRI~TIO~S IN AN IDEAL 
I~~O~FRESSI~LE STRATIFIED LIQUID* 

V.A. GORODTSOV 

The Cauchy problem is solved fox axisymmetric vortex perturbations of an 
exponentially stratified incompxessible ideal liquid. The behaviour of 
vorticity inside the region of its initial location, near the boundary of 
that region, and away from it in the "wave" zone is studied. Anumberof 
examples and analyzed with a specific initial distribution of vorticity, 
among which axe examples of anomalous solution behaviour. It is shown 
that the initial jump of vorticity in a stratified liquid does not vanish, 
but oscillates at a frequency which depends on the direction. When passing 
to the limit of strongly singular initial distributions of the vortex 
filament and cylindrical vortex layer types, the sohtion increases with 
tfme. 

1x1 liquids of inhomogeneous density (stratified liquids) in a gravity field the Archimedes 
forces in the absence of a free surface sustain the propagation of interval waves. Such waves 
have a vartex character and are capable af "carrying away" the vorticity from its original 
location region. Because of this, the voxticity distributions which were stationary in a 
homogeneous liquid may become unsteady in a stratified liquid, even when viscosiiyisneglected. 

Below, we consider, in the linear approximation of an ideal incompressible inhomogeneous 
liquid, the evolution of initially axisymmetric vorticity distributions (with a horizontal 
axis of s-try). The exact solutions obtained are in many respects close to the solution 
of the problem of the "collapse" of a cylindrical region with initial density perturbations, 
obtained earlier /l/. This similarity is associated with the fact that the vortex motion 
results in violation of the initial equilibrium density distribution in some region which sub- 
sequently leads to its "collapse=. The solution of the general problem of the collapse of a 
mixed liquid, allowing for the initial density perturbations and vorticity in the linear 
description can be represented by the sum of solutions of problemswith initial perturbations 
of only one of these characteristics, I.e. of the solutions considered below and solutions 
similar to that obtained in /l/. 

1. As the basic pexturbed state let us consider a stationary liquid with an exponential 
density distxibution along the vertical exp (A%/g}. The equations of small two-dimensional 
perturbations fwe restrict the consideration to two-dimensional motions in the vertical plane) 
in the linear approximation of an ideal Incompressible liquid can be then written in the form 
de.g., /2/l 

where p,p,u,la are perturbations of the pressure, 
space coordinates (a>0 downwards) and time, 

density and velocity components, t,s,t are 
and g and Hare the free-fall acceleration and 

the buoyancy frequency. The Roussinesq approximation is used here according to which the 
variation of the density in inertial terms is not taken into account. 

The evolution of the initial verticity distribution o = &/&I -&u/&x is defined by the 
equation 

Lw(t*t)=O, LJm -$J&&&-)+N*$$ 

which follows from the above system , and by the initial conditions 

fl.1) 

(1.2) 

The second of these conditions indicates the absence of initial density perturbations 
lthe original system of equations implies that &&% = -g@&s], 
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Using a Fourier transformation, the Solutions of such an initial value problem can be 
represented in the form 

of',@-& 5 d'ko(k, O)cos(Nt-f$) exp (ikr) (1.3) 

where, as is clear from the special case t =O, o&,0) is the Fourier transform of the initial 
vorticity distribution o(r, 0). 

Restricting the analysis of axisymmetric initial vorticity distributions it is possible 
to reduce the number of integrations in (1.3), since o&O) then actually depends only on 
the magnitude of the wave vector k -jkJ. After integration with respect to the directions 
of the vector k, we obtain the folfwing integral representatfon of the solution in terms of 
the Bessel function /3f: 

o(r,t~=~~~~(k,O~~Jo(R*~ (1.4) 

R*" = (kr ;Nt 1 CO9 cp 1)” + Nat* sin2 (p, x = r cos cp, 2 = r sin cp 

(certain singularities of similar representations were considered in /4/j. 
By expanding this expression in a Fourier series in the angular variable 9, which can be 

done using the theorem of the summation of cylindrical functions /3/, then in view of the 
angular symmetry (cp+x-q~, q,--cp), only harmonies of even number and angle are present 
in the expansion 

m(r, t) - ie.a.*(r)J,. (Ntfcos2nq (1.5) 

US,,(~) = -&-f dkLo(k, 0) &,(krf 
0 

Such a Fourier series is at the same time a Neumann expansion in cylindrical functions. 
When r-0 or when averaging over directions, the whole series reduces to the first term 

0 (r,t) frpo = = (0, 0) Jo Wt), <o (r, t)> = 0 tr, 0) Jo Wt) 11.6) 

so that for the vorticity averaged over the vorticity angles <o(r,t)> and for the vorticity 
on the axis o (O,t), a aharacteristic feature is oscillating damping (if of course, o (O,O)# 

0, cf. Sect.2, exmmple 2). For long times (Nt> 1)in conformity with the asymptotic 
behaviour of the Bessel function, the oscillationsof the buoyancy faquency N are damped as 
-(Pa)-‘13. 

A simple, but unexpected result follows for the total magnitude of the vorticity overthe 
radial half-line (assuming it to be finite) 

r drw (r, t) = cos (Nt sin 'p) f dro (r, 0) 
0 0 

(when integrating (1.5) it is necessary to use the well-known formulas /3/l. 

Thus in the linear approximation of an ideal liquid the total vorticity on the radial 
half-line does not decrease with time but oscillates at a frequency dependent on the direction. 
In the horizontal direction it generally does not vary. 

The vorticity, which initially was concentrated in a region with characteristic scale r,,, 
is carried away by internal waves for a considerable time far beyond the boundaries of the 

region. The integral (1.4) then yields a simple asymptotic estimate. If NtIsinq,(>l, the 

Bessel function under the integral can be replaced by a trigonometric asymptotic for% On 
the assumption that r>ro the function o (k, 0) is found to vary much more slowly than the 

trigonometric one, and the stationary points (using the method of stationary phase, or that 
of steepest descent) can be determined using the argument of the latter. When 

cp#& 

from two such stationary points only the point kc = Ntl coscp\/r falls In the integration in- 
terval, and the estimate of its contribution in its nearest neighbourhood yields 

k,o(k,, 0) 
O(?* t) ~cos(~tsintp) 2N t kc ++OS,l (l-7) 

The general solution analyzed above canalsobe WpreSSadintenSS of theintegral of the 
initial three-dimensional vorticity distribution, using the inverse Fourier transform from 

w (k, 0) to o (c, 0). In the case of an axisymmetric distribution, the two-dimensional. Fourier 
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transform reduces to the Hankel transform, using which, and also the theorem of the summation 

of cylindrical functions /3/ and formulas for the integrals of products of Bessel functions 

/3/, it is possible to derive from (1.4) 

0 (t, Q - -w(O,O)l,(Nf~+~dr~~K(Nt,f,cFj (1.8) 
* 

c 

(1.9) 

- P,, 6)) J2, (Nf) 00s 2ncp, r’ Q r 
w-1 

where, since the function K 
( 
Nt,-$, 9) vanishes when r'*>r, in the integral in (1.8) we insert 

a finite upper limit, and P,(Q is the Legendre polynomial in 5=-i-2$ which can be repfac- 

ea by the Jacobi polynomial p%"'@ =(p,(D -Pn+1(f)W -&a 
Let us give one more integral representation of the function K A+-,'P), 

i 
which can be 

obtained from (1.9), using the well-known formulas /3/ and a certain substitution of the angle 
variable of integration _ ‘^ 

llli 

K(Nf,f, tp)=j+ 1 dacos(asina)cos(b(cos2a + -$-ain”a)l”) 
0 

a=Nfsinrp(i -gy, b=Nt~~scp, T’<T 

which fortheverticaldirection (cp = s/2) is in facttheintegralrepresentationof theBessel func- 
tion 

(1.10) 

NotethatthepossibilityofsuchasimpleresUltfOrtheintegralofthepr~uctsof~sse~ 

functions from (l.g),when cp=-$- and r> r' hadpreviouslygivenr.i.setodoubts/Sf,andis not 
givenin/3/. Onlyin/6/wasamethodofcalculatingafairlylargeclassofsuchintegralsproposed. 

Far the horizontal direction (a, = 0) the inteqral is reduced to the derivative of an in- 
tegral propOrtiona to the three-dimensional Green's functionoftheinternal-waves operator L 
whose behaviour is investigated in detail in /7,8/(*). 

(1.11) 

2. Let us consider some examples, firstly, of the "vortex filament", when the vorticity 
initially uniformly fills a cylinder of radius ro. 

Example 1. For the distribution of the vortex filament type (h(r, - 1”) is the Heaviside 
unit function) 

0 (r, 0) = o& (TB - r), w (& 0) = 23w,o$, (kro)ik 

and from the general formulas (1.4) ox (1.81, (1.9) the vorticity evolution is defined by the 
integral 

which inside the region initially filled by vortices reduces to the Bessel function 

0 (r, t) = OoJ, (Nt), r r= r, (2.2) 

i.e. the vorticity there oscillates and is damped uniformly for all r<r, (campare with (1.6) ). 
In the region outside the boundaries of the original filament r>ro the result may be repres- 
ented in the form of a Neumann series (see (1.8) and (1.9)) 

*)See /7,8/ and Gorodtsov V.A. and Teodorovich E-B., Linear internal waves in an exponentially 
stratified ideal incompressible liquid. Pre-print No.114, Inst. Problems Mekhan., Acad. Nauk 
SSSH, 1978; and Gorodtsov V.A. and Teodorovich E.V., The Cherenkov radiation of internal waves 
by a uniformly moving source. Preprint No.183, Inst. Problem Mekhan., AN SSSH, 1981. 
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Sunmting this series for r = r. and using the relation &',(-I) = (-1)" and the formulas 
for the SXpMSiOn of a trigonometric function in Bessel functions /3/, for the jump at ids r0 
we obtain 

IO (r, t)l = -00 cos (Nt cos cp), T = ro iL.4) 

that indicates that the original vorticity jump at the boundary of the vortex filament does 
not vanish in time but oscillates at frequency dependent on the direction. 

Retaining in (2.3) terms linear with respect to the small ratio (r - rJ/r,,,we obtain 

oaahl 
r-r” s P 2r, - -acpr + . ..){Jo(Nt) - 03s wt co9 cp), , r > ro 

whioh makes clear that the jump zone decreases rapidly. The smallness of'the correction is 
here related to the smallness of the parameter NV(r - r,)lr,. 

For the vertical direction, by virtue of (1.8) and (l-10), we have the formula 

mI,_Ir=OoJo(Nt)-_ooJo(Ntl/l-_ro”/z’)((IzI-ro) 
2 

12.5) 

which confirms the previous results. 
R fairly simple analysis is possible for the horizontal direction owing to the direct 

relation of the answer to Green's function (see (1.11)). 
Finally, in the far "wave" zone at Nt lsin qr 1 >I, rho> 1 from (1.7) we have the asympt- 

otic form 

w(r.t)zw+JI(Nt + 1 cos cp I) cos (Nt sin 'p) 

Note that a similar analysis using the theorem of summation and recurrent formulas for 
cylindrical functions, is possible for the more general integrals of J,(kr,,)k”‘J,,(R#?*--“. The 
case when n =m = 1, I = 2 was considered in /I/. 

The singularity of the above solution lies in the fact that it conserves the vorticity 
shock amplitude (see also /l/).Thisisevidently related to the disregard of viscosity, and 
the non-linearityin the formulation of the input problem. Consideration of the viscosity 
leads to a diffusion blurring of the jump in a zone of thickness -(&’ after a time t. HOW- 
ever, the thickness of the jump zone in an ideally stratified liquid is characterized by the 
ratio r&V:)*, as is clear from the preceding. Hence for fairly short times (Nt < (N&‘)“‘) 

the effect of viscosity on the development of the jump can be neglected. The non-linearity 
must play a more significant part resulting in instability of similar vorticity jumps, and by 
the same token to a change in the nature of the "collapse". Moreover, when passing to the 
limit of the vortex filament in the solution obtained (r,,-0, oO-co, oOrOa = const) the limit solu- 
tion is found to increase with time, i.e. the basic state is unstable with respect to such 
singular vortex perturbations even in the linear approximation. 

Example 2. If at the initial instant the vorticity is distributed uniformly between 
coaxial horizontal cylindrical surfaces 

o(r, O)=o,{h(r,--r)--hr,--r)J, r,>r, 

then, owing to the linear formulation, the solution of the problem may be found in the form 
of the difference of the solutions of the previous example of two vortex filaments. Then, 
passing to the limit of an infinitely thin cylindrical vortex layer (rl+rz-+rO, To = xo,,(rlz - 
r2*) = const) 

o(r,O)=-&b(r--0) 
- 0 

We express the solution of this problem in terms of the solution of the first example 

ecos(Ntcoscp)8(r-ro) + 

It can be seen that inside the region bounded by the vortex layer the vortlclty is initia- 
lly zero, and subsequently the vortex layer oscillates at constant amplitude, while in the 

external zone the vorticity increases (undergoing oscillations) with time. The latter can be 

readily checked in the special case of the vertical direction, when it is possible to use 

formula (2.5). 
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In conclusion we present two more examples with smoothnon-singular vorticity distributions. 

Example 3. For the initial distribution 

which in view of the properties of the modified Bessel function is close to oO about the axis 
of synrnetry (1.4~0) and falls as oo~,l(rl/&while away from it (r>ro) the evolution of the 

vorticity is defined by the integral 

0 (r, t) = 2~fdkexP(-!g-p*(R*) (2.6) 
0 + 

which can be represented in the form of a Neumann series (1.5) with coefficients 

(2.7) 

Another convenient integral representation of the solution can be obtained, if in the 
formula of type (1.3) the integration is carried out not with respect to the angle but the 
wave number 

In the case of a vertical direction by termwise integration of the exponent expansion in 
a power series, we obtain another Neumann series 

Example 4. For the initial exponential distribution 

” (k* 0) = nwo* erp 

the integral formula (1.4) takes the form (cf (2.6)) 

(2.8) 

(2.9) 

The coefficients of expansion in series of the type (1.5) are expressed in terms of 
modified Bessel functions of half-integral order (caapare with (2.7)) 

For the vertical direction the integral (2.9) is reduced, by changing the variable of 
integration E = (kV+ NV)+ , to the incomplete Weber integral QO(zY@, Nt) /6/. 

@I A =ooerp 
"T 

L$!z$-$){i-Q#($, jvt)} (2.10) 

Qo (.t, Y) = 9 4 dES JO (E) erp (- z) , Q. (3, m) = f 

0 

In conformity with the expansion of that integral in 
distribution along the vertical we have 

Neumann series /6/ for the vorticity 

from which we can obtain the following asymptotic form: 
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Here, as in previous examples, a decisive part is played by the mixed space-time para- 

32 meter Nt r' f 
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STABILITY AND ~~ISSIB~lrTY OF DISC~NTI~UITIES IN Tt+E SYSTEMS OF 
EQUATIOM OF TWO-PHASE FILTRATION* 

P.G. HEDRIKOVETSKII and M.V. LUR'E 

To obtain the additional conditions at a discontinuity in the solution of 
the non-convexhyperbolic systems of equations of two-phase filtration with 
an active admixture /l-3/ (**) an approach is proposed that differs from 
the method of vanishing viscosity. The discontinuous solution is consid- 
ered as the limit of solutions of thenon-equilibrium system, when the 
characteristic time for thermodynamic equilibrium to become established 
approaches zero. The admissibility conditions obtained (of the existence 
of a structure) are the same as the equilibrium conditions in Oleinik's 
form /5,6/, and ensure the existence and uniqueness of the selfsimiliar 
solution of the problem of discontinuity disintegration. 

The processes of petroleum displacement by hydrodynamically active fluids is defined by 
systems ofnon-lineardifferential equation of hyperbolic type, as in gas dynamics, for which 
discontinuous solutions are characteristic /7/. The stability of the discontinuity with 

respect to small perturbations is a generally acceptable requirement in the linearized problem 

/8,9/. However, for some non-convexsytems of the equations of gas dynamics and elasticity 
theory, the solution of the problem of discontinuity disintegxation, containing stable discon- 
tinuities is not unique /6,10/. Supplementary conditions at the discontinuity ensuring the 
uniqueness of the solution were obtained either by generalizing the concept of stability, or 
as the limit of the solutions of the corresponding problem in a more comprehensive physical 
theory of "vanishing viscosity" /a--11/. 
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